Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 12(1): 16704, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2050550

ABSTRACT

Wastewater-based epidemiology has shown to be an efficient tool to track the circulation of SARS-CoV-2 in communities assisted by wastewater treatment plants (WWTPs). The challenge comes when this approach is employed to help Health authorities in their decision-making. Here, we describe the roadmap for the design and deployment of SARSAIGUA, the Catalan Surveillance Network of SARS-CoV-2 in Sewage. The network monitors, weekly or biweekly, 56 WWTPs evenly distributed across the territory and serving 6 M inhabitants (80% of the Catalan population). Each week, samples from 45 WWTPs are collected, analyzed, results reported to Health authorities, and finally published within less than 72 h in an online dashboard ( https://sarsaigua.icra.cat ). After 20 months of monitoring (July 20-March 22), the standardized viral load (gene copies/day) in all the WWTPs monitored fairly matched the cumulative number of COVID-19 cases along the successive pandemic waves, showing a good fit with the diagnosed cases in the served municipalities (Spearman Rho = 0.69). Here we describe the roadmap of the design and deployment of SARSAIGUA while providing several open-access tools for the management and visualization of the surveillance data.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral , Sewage , Wastewater , Wastewater-Based Epidemiological Monitoring
2.
Curr Opin Environ Sci Health ; 24: 100308, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1499748

ABSTRACT

SARS-CoV-2 variants are emerging worldwide, and monitoring them is key in providing early warnings. Here, we summarize the different analytical approaches currently used to study the dissemination of SARS-CoV-2 variants in wastewater and discuss their advantages and disadvantages. We also provide preliminary results of two sensitive and cost-effective approaches: variant-specific reverse transcription-nested PCR assays and a nonvariant-specific amplicon deep sequencing strategy that targets three key regions of the viral spike protein. Next-generation sequencing approaches enable the simultaneous detection of signature mutations of different variants of concern in a single assay and may be the best option to explore the real picture at a particular time. Targeted PCR approaches focused on specific signature mutations will need continuous updating but are sensitive and cost-effective.

3.
Sci Total Environ ; 800: 149562, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1347824

ABSTRACT

In the wake of the COVID-19 pandemic, the use of next generation sequencing (NGS) has proved to be an important tool for the genetic characterization of SARS-CoV-2 from clinical samples. The use of different available NGS tools applied to wastewater samples could be the key for an in-depth study of the excreted virome, not only focusing on SARS-CoV-2 circulation and typing, but also to detect other potentially pandemic viruses within the same family. With this aim, 24-hours composite wastewater samples from March and July 2020 were sequenced by applying specific viral NGS as well as target enrichment NGS. The full virome of the analyzed samples was obtained, with human Coronaviridae members (CoV) present in one of those samples after applying the enrichment. One contig was identified as HCoV-OC43 and 8 contigs as SARS-CoV-2. CoVs from other animal hosts were also detected when applying this technique. These contigs were compared with those obtained from contemporary clinical specimens by applying the same target enrichment approach. The results showed that there is a co-circulation in urban areas of human and animal coronaviruses infecting domestic animals and rodents. NGS enrichment-based protocols might be crucial to describe the occurrence and genetic characteristics of SARS-CoV-2 and other Coronaviridae family members within the excreted virome present in wastewater.


Subject(s)
COVID-19 , Pandemics , Animals , High-Throughput Nucleotide Sequencing , Humans , SARS-CoV-2 , Sewage
4.
J Water Health ; 18(5): 613-630, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-910151

ABSTRACT

The COVID-19 pandemic placed hygiene at the centre of disease prevention. Yet, access to the levels of water supply that support good hand hygiene and institutional cleaning, our understanding of hygiene behaviours, and access to soap are deficient in low-, middle- and high-income countries. This paper reviews the role of water, sanitation and hygiene (WaSH) in disease emergence, previous outbreaks, combatting COVID-19 and in preparing for future pandemics. We consider settings where these factors are particularly important and identify key preventive contributions to disease control and gaps in the evidence base. Urgent substantial action is required to remedy deficiencies in WaSH, particularly the provision of reliable, continuous piped water on-premises for all households and settings. Hygiene promotion programmes, underpinned by behavioural science, must be adapted to high-risk populations (such as the elderly and marginalised) and settings (such as healthcare facilities, transport hubs and workplaces). WaSH must be better integrated into preparation plans and with other sectors in prevention efforts. More finance and better use of financing instruments would extend and improve WaSH services. The lessons outlined justify no-regrets investment by government in response to and recovery from the current pandemic; to improve day-to-day lives and as preparedness for future pandemics.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Sanitation , Aged , COVID-19 , Humans , Hygiene , SARS-CoV-2 , Water
5.
Journal of Water Sanitation and Hygiene for Development ; 10(3):379-396, 2020.
Article in English | Web of Science | ID: covidwho-883773

ABSTRACT

The COVID-19 pandemic placed hygiene at the centre of disease prevention. Yet, access to the levels of water supply that support good hand hygiene and institutional cleaning, our understanding of hygiene behaviours, and access to soap are deficient in low-, middle- and high-income countries. This paper reviews the role of water, sanitation and hygiene (WaSH) in disease emergence, previous outbreaks, combatting COVID-19 and in preparing for future pandemics. We consider settings where these factors are particularly important and identify key preventive contributions to disease control and gaps in the evidence base. Urgent substantial action is required to remedy deficiencies in WaSH, particularly the provision of reliable, continuous piped water on-premises for all households and settings. Hygiene promotion programmes, underpinned by behavioural science, must be adapted to high-risk populations (such as the elderly and marginalised) and settings (such as healthcare facilities, transport hubs and workplaces). WaSH must be better integrated into preparation plans and with other sectors in prevention efforts. More finance and better use of financing instruments would extend and improve WaSH services. The lessons outlined justify no-regrets investment by government in response to and recovery from the current pandemic;to improve day-to-day lives and as preparedness for future pandemics.

6.
Curr Opin Environ Sci Health ; 17: 21-28, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-720479

ABSTRACT

As the novel SARS-CoV-2 was detected in faeces, environmental researchers have been using centrifugal ultrafiltration, polyethylene glycol precipitation and aluminium hydroxide flocculation to describe its presence in wastewater samples. High recoveries (up to 65%) are described with electronegative filtration when using surrogate viruses, but few literature reports recovery efficiencies using accurate quantification of enveloped viruses. Considering that every single virus will have a different behaviour during viral concentration, it is recommended to use an enveloped virus, and if possible, a betacoronaviruses as murine hepatitis virus, as a surrogate. In this review, we show new data from a newly available technology that provides a quick ultrafiltration protocol for SARS-CoV-2. Wastewater surveillance is an efficient system for the evaluation of the relative prevalence of SARS-CoV-2 infections in a community, and there is the need of using reliable concentration methods for an accurate and sensitive quantification of the virus in water.

7.
Water Res ; 184: 116181, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-641080

ABSTRACT

Worldwide, clinical data remain the gold standard for disease surveillance and tracking. However, such data are limited due to factors such as reporting bias and inability to track asymptomatic disease carriers. Disease agents are excreted in the urine and feces of infected individuals regardless of disease symptom severity. Wastewater surveillance - that is, monitoring disease via human effluent - represents a valuable complement to clinical approaches. Because wastewater is relatively inexpensive and easy to collect and can be monitored at different levels of population aggregation as needed, wastewater surveillance can offer a real-time, cost-effective view of a community's health that is independent of biases associated with case-reporting. For SARS-CoV-2 and other disease-causing agents we envision an aggregate wastewater-monitoring system at the level of a wastewater treatment plant and exploratory or confirmatory monitoring of the sewerage system at the neighborhood scale to identify or confirm clusters of infection or assess impact of control measures where transmission has been established. Implementation will require constructing a framework with collaborating government agencies, public or private utilities, and civil society organizations for appropriate use of data collected from wastewater, identification of an appropriate scale of sample collection and aggregation to balance privacy concerns and risk of stigmatization with public health preservation, and consideration of the social implications of wastewater surveillance.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Wastewater , COVID-19 , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL